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I.   INTRODUCTION 

 

Zadeh [18] introduced the concept of fuzzy sets almost 50 

years back in 1965, followed by many researchers [9, 10, 

15, 16] they have studied fixed point theory in fuzzy 

metric spaces. The concept of fuzzy metric spaces also 
introduced ways by Erceg [4], Kaleva and Seikkala [12], 

Kramosil and Michalek [13] and Deng [3]. 

Earlier fuzzy mappings was studied by [1, 2, 11, 17] which 

opened a new vindo for further study and development of 

in analysis in such spaces and mappings with a vast 

applications. As a consequence many metric fixed point 

results were generalized to fuzzy metric spaces by various 

authors. Gahler in a series of papers [6, 7, and 8] 

investigated 2-metric spaces. Sharma, Sharma and Iseki 

[14] studied for the first time contraction type mappings in 

2-metic space.  
We know that 2-metric space is a real valued function of a 

point triples on a set X, which abstract properties were 

suggested by the area function in Euclidean spaces. In the 

present paper we obtain some common fixed point 

theorems on fuzzy metric spaces generalizing the earlier 

results of fisher [5], also we extend this result to fuzzy 2-

metric spaces. 

 

II.   PRELIMINARIES 

 

To start the main result we need some basic definitions. 

 

Definition 2.1: A binary operation *:[0,1]x[0,1][0,1] is 
called a continuous t-norm if ([0,1],*) is an abelian 

Topological monodies with unit 1 such that a * b ≥ c * d 

whenever  a  ≥ c and  b ≥ d  for all a, b, c, d  [0, 1]  
Example of t-norm are a * b = a b and a * b = min {a, b}  

 

Definition 2.2: The 3-tuple (X, M, *) is called a fuzzy 

metric space if X is an arbitrary set,* is a continuous t-

norm and M is a fuzzy set in X2 x [0,) satisfying the 

following conditions for all x, y, z  X and s, t > 0,  
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In what follows (X, M,*) will denote a fuzzy metric space.   

Note that M (x, y, t) can be thought of as the degree of 

nearness between x and y with respect to t. We identify     

x = y with M (x, y, t) = 1 for all t > 0 and M (x, y, t) = 0 

with .  
Example 2.1: Let (X, d) be a metric space. 

 Define a * b = a b, or a * b = min {a, b} and for all x, y X 
and t > 0, 

 
 yxdt

t
tyxM

,
,,


             ---- 2.1.1 

Then (X, M,*) is a fuzzy metric space. We call this fuzzy 

metric M induced by the metric d the standard fuzzy 

metric.   

Definition 2.3: Let (X, M, *) is a fuzzy metric space.  

(i) A sequence {xn} in X is said to be convergent to a point 

x  X,      1),,(lim 


txxM n
n

 

(ii) A sequence {xn} in X is called a Cauchy sequence if  

        lim ( , , ) 1, 0and 0n p n
n

M x x t t p


    

(iii) A fuzzy metric space in which every Cauchy sequence 

is convergent is  said to be Complete.   
Let (X, M, *) is a fuzzy metric space with the following 

condition.  

 (FM-6)     lim ( , , ) 1, ,
t

M x y t x y X


      

Definition 2.4: A function M is continuous in fuzzy metric 

space iff whenever 

),,(),,(lim, tyxMtyxMyyxx nn
n

nn 

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Definition 2.5: Two mappings A and S on fuzzy metric 

space X are weakly commuting if and only if M (ASu, 

SAu, t) ≥ M (Au,Su,t)  uX 
Definition 2.6: A binary operation * : [0, 1] x [0,1] x [0,1] 

 [0,1] is called a continuous t-norm if ([0,1],*) is an 
abelian topological monodies with unit 1 such that a1 * b1 * 

c1 ≥ a2 * b2 * c2 whenever  a1 ≥ a2, b1 ≥ b2, c1 ≥ c2 for all a1, 

a2, b1, b2 and c1, c2 are in [0,1].  

Definition 2.7: The 3-tuple (X, M, *) is called a fuzzy 2-

metric space if X is an arbitrary set, * is continuous t-norm 

and M is fuzzy set in X3 x [0,) satisfying the following 
conditions:  
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Definition 2.8: Let (X, M,*) be a fuzzy 2-metric space: 

 

(1) A sequence {xn} in fuzzy 2-metric space X is said to 

be convergent to a point x  X,  

 
lim ( , , , ) 1, forall and 0n
n

M x x a t a X t


    

(2) A sequence {xn} in fuzzy 2-metric space X is called a 

Cauchy sequence, if  

lim ( , , , ) 1,forall and , 0n p n
n

M x x a t a X t p


    

 (3) A fuzzy 2-metric space in which every Cauchy 

sequence is convergent is said to be complete.  

Definition 2.9: A function M is continuous in fuzzy 2-

metric space, iff whenever  

, , then lim ( , , , ) ( , , , ),

and 0

n n n n
n

x x y y M x y a t M x y a t

a X t


  

  
 

Definition 2.10: Two mappings A and S on fuzzy 2-

metric space X are weakly commuting iff M (ASu, SAu,a, 

t) ≥ M (Au,Su,a,t). 

 

Some Basic Results 

Lemma (2.1): For all x, y  X, M(x, y) is non -decreasing. 
Lemma (2.2): Let {yn} be a sequence in a fuzzy metric 

space (X, M,*) with the condition (FM -6) If there exists a 

number q  (0,1) such that   

 
2 1 1( , , ) ( , , ) , 0and

1,2,3......, then isa Cauchysequencein X.

n n n n

n

M y y qt M y y t t

n y

    


 

 

Lemma (2.3): If for all x, y  X, t > 0 and for a number q 

 (0, 1), 

( , , ) ( , , ), thenM x y qt M xc y t x y 
 

Fisher [5] proved the following theorem for three 

mappings in complete metric space:  

Theorem 2.A: Let S and T be continuous mappings of a 

complete metric space (X, d) into itself. Then S and T 

have a common fixed point in X iff there exists a 

continuous mapping A of X into S (X)  T (X), which 
commutes with S and T and satisfy     

d (Ax, Ay) ≥   d (Sx, Ty) for all x, y  X and 0 <  < 1. 
Then S, T and A have a unique common fixed point.  

 

III. MAIN RESULTS 

 

Now we prove these theorems in complete fuzzy 2-metric 
space.                

           

Theorem 3.1: Let (X, M, *) be a complete fuzzy 2-metric 

space and let S
r

and T
r

be continuous mappings of X in 

X, then S
r

and T
r

have a common fixed point in X if there 

exists continuous mapping A
r

of X into S
r

(X)  T
r

(X) 
which weakly compatible with Sr and Tr and 

3.1.1. 
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for all x, y, a  X,  t > 0, and 0 < q < 1. And 

3.1.2.          lim ( , , , , ) 1, , , ,
n

M x y z a t x y z a X


     

Then S
r

, T
r

 and A
r

 have a unique common fixed point.  

 

Proof: We define a sequence {xn} such that A
r

x2n = S
r

x2n-1 and A
r

x2n-1 = T
r

x2n,  n = 1, 2,----- 

We shall prove that {A
r

xn} is a Cauchy sequence. For 

this suppose x = x2n and y = x2n+1 in (3.1.1), we write 
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 Therefore

 2 2 1 2 1 2, , , , , ,r r r r r
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By induction  
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For every k and m in N, Further if 2m + 1 > 2k, then  

 

 

2 2 1 2 1 2

0 2 1 2 2

, , , , , , .......

......................... 3.1.3, , ,

k m k m

m k kr

r r r r r

r

r r

t
M A x A x a q t M A x A x a

q

t
M A x A x a

q

 

 

 
  

 

 
  

 

  

If 2k > 2m+1, then 
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By simple induction with (3.1.3) and (3.1.4) we have   
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For n = 2k, p = 2m+1 or n = 2k+1, p = 2m +1 and by (FM-

4) 
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If n = 2k, p = 2m or n = 2k+1, p = 2m 

Therefore every positive integer p and n in N 
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r r t
M A x A x a as n

q
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Thus {A

r
xn} is a Cauchy sequence. Since the space X is 

complete there exists z  X, such that  

2 1 2lim lim limn n n
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It follows that A
r

z  = S
r

z  = T
r

z and therefore 
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Thus z is common fixed point of Ar, Sr and Tr.  

For uniqueness, let w (w  z) be another common fixed 

point of S
r

, T
r

and A
r

 for all r > 0. By inequality we 
write  
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Therefore by lemma (2.3), we get z = w. 
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